Sponsored message
Audience-funded nonprofit news
radio tower icon laist logo
Next Up:
0:00
0:00
Subscribe
  • Listen Now Playing Listen
NPR News

A New Way To Stop Viruses

Truth matters. Community matters. Your support makes both possible. LAist is one of the few places where news remains independent and free from political and corporate influence. Stand up for truth and for LAist. Make your year-end tax-deductible gift now.

Listen 3:02
Listen to the Story

DAVID GREENE, HOST:

It is not easy to treat viral infections, but scientists in Massachusetts think they may have found a new way to stop viruses from making people sick by using what amounts to a pair of molecular scissors. NPR science correspondent Joe Palca explains.

JOE PALCA, BYLINE: When a virus infects a cell in our bodies, it hijacks the cell's molecular machinery to make copies of itself. Those new viruses can go on to spread the infection through your body.

CAMERON MYHRVOLD: We need to be able to cut the virus at a fast enough rate to slow down replication or to stop replication from happening.

Sponsored message

PALCA: Cameron Myhrvold is a postdoc at the Broad Institute in Cambridge. Myhrvold works with so-called RNA viruses - viruses that package their genetic information in RNA, a chemical cousin of DNA. To cut the viral RNA, he uses a molecular tool called CRISPR - in this case, CRISPR-Cas3 - that can target a specific region of RNA.

MYHRVOLD: Cas13, when it finds its target, it can become very active and start to cut other RNAs.

PALCA: Finding the right target is key. There's a lot of RNAs inside cells that are necessary for the cell to survive. So it's important to find an RNA target that's unique to the virus you're trying to control. Myhrvold says RNA viruses are particularly difficult to control because they're a bit like shape shifters. They tend to change their genetic sequences when you try to pin them down.

MYHRVOLD: They really want to understand what the virus is doing in response to Cas13 treatment.

PALCA: Myhrvold's colleague Catherine Freije says what the virus does in response to treatment should be informative.

CATHERINE FREIJE: That could potentially teach us about what parts of the virus are particularly important for its function.

PALCA: And that, in turn, will show the best places to target the virus in order to disable it. So far, Freije and Myhrvold say they've only showed their anti-viral treatment works in cells. But Pardis Sabeti, head of the lab they work in, is bullish about using the CRISPR-Cas13 system to treat viral infections in people.

Sponsored message

PARDIS SABETI: There's still a bunch of things we want to work out, but we feel pretty confident that this will work as a therapy if it can be delivered in the right way.

PALCA: By delivering, she means getting the CRISPR-Cas13 tool into the right cells inside an infected patient. Now, CRISPR-Cas13 specifically targets RNA, so it will only be useful for illnesses caused by RNA viruses, like flu and Zika. But Janice Chen says researchers are now finding a variety of CRISPRs with different properties. Chen is chief research officer at Mammoth Biosciences, a company that hopes to capitalize on CRISPR technology.

JANICE CHEN: Having a broader CRISPR toolbox is really important to figuring out what is the specific need for any given application.

PALCA: Progress in building that toolbox has proceeded quite quickly. After all, it's only been six years since scientists first became aware of how powerful a tool CRISPR could be. Joe Palca, NPR News. Transcript provided by NPR, Copyright NPR.

You come to LAist because you want independent reporting and trustworthy local information. Our newsroom doesn’t answer to shareholders looking to turn a profit. Instead, we answer to you and our connected community. We are free to tell the full truth, to hold power to account without fear or favor, and to follow facts wherever they lead. Our only loyalty is to our audiences and our mission: to inform, engage, and strengthen our community.

Right now, LAist has lost $1.7M in annual funding due to Congress clawing back money already approved. The support we receive before year-end will determine how fully our newsroom can continue informing, serving, and strengthening Southern California.

If this story helped you today, please become a monthly member today to help sustain this mission. It just takes 1 minute to donate below.

Your tax-deductible donation keeps LAist independent and accessible to everyone.
Senior Vice President News, Editor in Chief

Make your tax-deductible year-end gift today

A row of graphics payment types: Visa, MasterCard, Apple Pay and PayPal, and  below a lock with Secure Payment text to the right