Congress has cut federal funding for public media — a $3.4 million loss for LAist. We count on readers like you to protect our nonprofit newsroom. Become a monthly member and sustain local journalism.
Scientists Have Found Signs Of A New Kind Of Gravitational Wave. It's Really Big

Scientists say they are starting to find signs of an elusive type of rumbling through space that could be created by the biggest, baddest black holes in the universe.
The discovery means that astrophysicists may have opened a whole new window onto supermassive black holes. These mysterious, extremely dense objects, millions to billions of times more massive than the sun, sit at the center of galaxies like our own.
When two galaxies merge, the enormous black holes at their centers are thought to come together and circle each other in a spinning dance that sends giant waves spiraling out.
These waves are like the ripples that move through a pond if you toss in a rock — only these waves move through the very fabric of the universe, and researchers have been eager to study them.
"We've been on a mission for the last 15 years to find a low-pitched hum of gravitational waves resounding throughout the universe," says Stephen Taylor, a Vanderbilt University astrophysicist who serves as the chair of a team of researchers known as the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). "We're very happy to announce that our hard work has paid off."
Other research groups using telescopes in Europe, Australia, India, and China also say they're starting to see hints of these waves.
A new class of space ripples
Until now, scientists have only been able to detect gravitational waves created by much smaller black holes. The first were seen in 2015, when a research consortium registered the waves created by the merger of two black holes that were each about 30 times as massive as the sun.
That landmark discovery showed that gravitational waves truly existed, fulfilling a prediction made by Albert Einstein in 1916 and giving researchers a new way to study exotic phenomena like black holes and neutron stars.
The initial detection of those gravitational waves relied on a pair of specially-built devices, in Louisiana and Washington, that sent lasers down two 2.5-mile "arms," or tubes. When a gravitational wave rolled through and stretched space, these detectors could catch the incredibly slight change in the distance traveled by the lasers.
That approach worked to find gravitational waves that stretched roughly 2,000 miles long, says Jeff Hazboun, an astrophysicist at Oregon State University. But this wouldn't work to find the kind of long-wavelength gravitational waves created by supermassive black holes — the kind whose wavelength is four light-years long, or "20 million million miles," says Hazboun. To catch wavelengths that long, a detector would have to have "arms" that stretched as long as half of the galaxy.
So researchers decided to turn the galaxy itself into a kind of detector, by taking advantage of its existing weirdness.
"We get to hack the galaxy," says Hazboun, a member of the NANOGrav team, which has nearly 100 members from the U. S, Canada, and a dozen other countries. "That is one of the most exciting things about this project for me."
NANOGrav's technique relies on monitoring pulsars, which are the super-dense, spinning cores of dead stars. Each pulsar is small, about the size of a city, but it spins hundreds of times a second, sending out beams of radio emissions that regularly sweep the sky.
"Each time their beam crosses our line of sight, we see a pulse signal," says NANOGrav collaboration member Thankful Cromartie of Cornell University. "These pulses arrive at stunningly regular intervals."
The intervals are so regular that scientists can predict exactly when a pulse should arrive at Earth. They can then look for tiny deviations from that expected arrival time.
"And if that pulse is a little bit late or a little bit early, then we may be able to attribute that to a gravitational wave passing through," says Hazboun, who explains that a gravitational wave will stretch or compress space-time, changing the distance that a pulse has to travel to get to Earth.
In their latest analysis, which is being published in a series of papers in The Astrophysical Journal Letters, the researchers looked at data from about 70 pulsars.
What they found is a pattern of deviations from the expected pulsar beam arrival timings that suggests gravitational waves are jiggling space-time as though it's a vast serving of Jell-O.
"It's really hard to attribute that the waves are coming from one direction or another," says Hazboun.
Rather than seeing one wave come rolling in, like someone standing on a beach, he says, it's more like the experience of swimming out in a choppy ocean.
The researchers don't yet know what's creating these waves. What they see is consistent with predictions about supermassive black holes, but it could be something even more unusual.
"The theorists have really had a lot of fun coming up with models that can produce very similar types of gravitational wave signals," says Luke Zoltan Kelley, a theoretical astrophysicist at Northwestern University and NANOGrav.
He says the possibilities range from cosmic strings to dark matter to primordial black holes that formed soon after the Big Bang.
'We have been lucky, so why not them?'
The new work convinced Gabriela González of Louisiana State University, a member of the Laser Interferometer Gravitational-Wave Observatory (LIGO) scientific collaboration, which now routinely detects gravitational wave signals from much less massive black holes.
"They have done several very sophisticated analyses," she says. "They all confirm the same observation. There are gravitational waves here."
The nature of this kind of evidence for gravitational waves means that certainty grows as more data from pulsars gets collected, she says, adding that a few years ago, the data published by this group seemed to be trending in this direction.
"They had seen very strong evidence for some kind of rumbling in the galaxy. They couldn't confirm that it was due to gravitational waves, but there was something there," she says. "So we have been expecting this for several years now."
And the NANOGrav researchers are already poring over a dataset that includes a couple more years' worth of observations.
"We expect the gravitational wave evidence that we've seen in this 15-year dataset to be even stronger in that one," says Maura McLaughlin, an NANOGrav astrophysicist at West Virginia University.
The NANOGrav collaboration, which is funded in large part by the National Science Foundation, also plans to merge their findings with similar efforts by researchers overseas, as part of a group called the International Pulsar Timing Array.
That effort should be complete in the next year or two, says McLaughlin, and would add information on even more pulsars to the mix.
In addition to providing stronger evidence of the gravitational wave background signal, she says, it might even let researchers zero in on the location of one particular source, like a pair of nearby supermassive black holes.
For that to happen, says González, "they would have to be lucky. Although, we have been lucky, so why not them?"
Scientists could then try to observe them with telescopes to learn more about them, much like they did in 2017 when detectors registered gravitational waves from the collision of two neutron stars. That allowed astronomers to point their telescopes in that direction and witness the faint glow of this never-before-seen event.
-
Copyright 2024 NPR. To see more, visit npr.org.
As Editor-in-Chief of our newsroom, I’m extremely proud of the work our top-notch journalists are doing here at LAist. We’re doing more hard-hitting watchdog journalism than ever before — powerful reporting on the economy, elections, climate and the homelessness crisis that is making a difference in your lives. At the same time, it’s never been more difficult to maintain a paywall-free, independent news source that informs, inspires, and engages everyone.
Simply put, we cannot do this essential work without your help. Federal funding for public media has been clawed back by Congress and that means LAist has lost $3.4 million in federal funding over the next two years. So we’re asking for your help. LAist has been there for you and we’re asking you to be here for us.
We rely on donations from readers like you to stay independent, which keeps our nonprofit newsroom strong and accountable to you.
No matter where you stand on the political spectrum, press freedom is at the core of keeping our nation free and fair. And as the landscape of free press changes, LAist will remain a voice you know and trust, but the amount of reader support we receive will help determine how strong of a newsroom we are going forward to cover the important news from our community.
Please take action today to support your trusted source for local news with a donation that makes sense for your budget.
Thank you for your generous support and believing in independent news.

-
The union representing the restaurant's workers announced Tuesday that The Pantry will welcome back patrons Thursday after suddenly shutting down six months ago.
-
If approved, the more than 62-acre project would include 50 housing lots and a marina less than a mile from Jackie and Shadow's famous nest overlooking the lake.
-
The U.S. Supreme Court lifted limits on immigration sweeps in Southern California, overturning a lower court ruling that prohibited agents from stopping people based on their appearance.
-
Censorship has long been controversial. But lately, the issue of who does and doesn’t have the right to restrict kids’ access to books has been heating up across the country in the so-called culture wars.
-
With less to prove than LA, the city is becoming a center of impressive culinary creativity.
-
Nearly 470 sections of guardrailing were stolen in the last fiscal year in L.A. and Ventura counties.