Sponsor
Audience-funded nonprofit news
radio tower icon laist logo
Next Up:
0:00
0:00
Subscribe
  • Listen Now Playing Listen
NPR News

Brain cells, interrupted: How some genes may cause autism, epilepsy and schizophrenia

New research probes the relationship between certain genes and brain disorders like autism and schizophrenia.
New research probes the relationship between certain genes and brain disorders like autism and schizophrenia.
(
Jill George / NIH
)

With our free press under threat and federal funding for public media gone, your support matters more than ever. Help keep the LAist newsroom strong, become a monthly member or increase your support today.

Listen 3:41
Listen to the Story

A team of researchers has developed a new way to study how genes may cause autism and other neurodevelopmental disorders: by growing tiny brain-like structures in the lab and tweaking their DNA.

These "assembloids," described in the journal Nature, could one day help researchers develop targeted treatments for autism spectrum disorder, intellectual disability, schizophrenia, and epilepsy.

"This really accelerates our effort to try to understand the biology of psychiatric disorders," says Dr. Sergiu Pașca, a professor of psychiatry and behavioral sciences at Stanford University and an author of the study.

The research suggests that someday "we'll be able to predict which pathways we can target to intervene" and prevent these disorders, adds Kristen Brennand, a professor of psychiatry at Yale who was not involved in the work.

Sponsor

The study comes after decades of work identifying hundreds of genes that are associated with autism and other neurodevelopmental disorders. But scientists still don't know how problems with these genes alter the brain.

"The challenge now is to figure out what they're actually doing, how disruptions in these genes are actually causing disease," Pașca says. "And that has been really difficult."

For ethical reasons, scientists can't just edit a person's genes to see what happens. They can experiment on animal brains, but lab animals like rodents don't really develop anything that looks like autism or schizophrenia.

So Pașca and a team of scientists tried a different approach, which they detailed in their new paper.

The team did a series of experiments using tiny clumps of human brain cells called brain organoids. These clumps will grow for a year or more in the lab, gradually organizing their cells much the way a developing brain would. And by exposing an organoid to certain growth factors, scientists can coax it into resembling tissue found in brain areas including the cortex and hippocampus.

"We can actually make different parts of the nervous system in a dish from stem cells," Pașca says. When these parts are placed in the same dish, they will even form connections, much like an actual brain. The resulting structure is called an assembloid.

Pașca's team thought they could use assembloids to study how developmental disorder genes affect special brain cells called interneurons, which are thought to play a role in several psychiatric disorders.

Sponsor

During pregnancy and the first two years of life, these special cells must complete a remarkable journey.

"Interneurons are born in deep regions of the brain, and then they have to migrate all the way to the cortex," Pașca says. "So you can imagine that during that migration a lot of things could go awry."

Pașca's team simulated the migration of interneurons by creating assembloids containing two types of organoids. One resembled an area deep in the brain called the subpallium, where most interneurons are generated. The other organoid resembled the cerebral cortex, where interneurons are supposed to end up.

"And then we've put them together, allowing these interneurons to move towards the cerebral cortex," he says.

The process worked just the way it's supposed to in assembloids containing typical organoids. So next, the team used a gene-editing technique called CRISPR to alter the organoids.

This approach allowed the team to study the effect of more than 400 genes associated with neurodevelopmental disorders. And they found that 46 of those genes were involved in either the generation of interneurons, or with their migration. Knock out a part of those genes and interneurons no longer arrived where they were supposed to.

In the cerebral cortex, interneurons serve as inhibitory neurons, which means they act a bit like the brake in a car. The interneurons can release a neurotransmitter that tells other neurons to reduce their activity.

Sponsor

Meanwhile, excitatory neurons act as the accelerator, telling other cells to become more active.

Brain networks rely on a delicate balance between excitatory and inhibitory neurons. Too much acceleration and the result can be an epileptic seizure. Too much brake and vital information may get lost or delayed.

The study is important because it offers a way for scientists to study the effect of many genes at the same time, and identify the ones that affect a particular type of cell or cell function during brain development, says Dr. Guo-li Ming, a professor of neuroscience at the University of Pennsylvania's Perelman School of Medicine.

The research also shows clearly how gene variants could lead to autism or some other neurodevelopmental disorder by disturbing interneurons.

"That would be a disaster" in a developing brain, Ming says. "The circuitry would be wrong and the signaling would be wrong, and ultimately the brain functioning would be wrong."

Ming, who was not connected with study, says her lab would like to use the combination of assembloids and CRISPR in their own research on schizophrenia, another psychiatric disorder with a neurodevelopmental origin.

Pașca's study could help brain scientists make the sort of advances that cancer researchers have in the past few decades, says Brennand.

Sponsor

"Thirty years ago, we might have thought all intestinal cancers should be treated the same way and all lung cancers should be treated the same way," she says. "Now we know a lot better."

Instead of choosing treatments according to the location of a cancer, doctors study a tumor's genes to determine which therapy is most likely to work. A similar approach could eventually help people with autism spectrum disorder, epilepsy, and schizophrenia, Brennand says.

"This improved genetic understanding will let us do better," she says, "because we'll know which pathways we can target to intervene."

Copyright 2023 NPR. To see more, visit https://www.npr.org.

At LAist, we believe in journalism without censorship and the right of a free press to speak truth to those in power. Our hard-hitting watchdog reporting on local government, climate, and the ongoing housing and homelessness crisis is trustworthy, independent and freely accessible to everyone thanks to the support of readers like you.

But the game has changed: Congress voted to eliminate funding for public media across the country. Here at LAist that means a loss of $1.7 million in our budget every year. We want to assure you that despite growing threats to free press and free speech, LAist will remain a voice you know and trust. Speaking frankly, the amount of reader support we receive will help determine how strong of a newsroom we are going forward to cover the important news in our community.

We’re asking you to stand up for independent reporting that will not be silenced. With more individuals like you supporting this public service, we can continue to provide essential coverage for Southern Californians that you can’t find anywhere else. Become a monthly member today to help sustain this mission.

Thank you for your generous support and belief in the value of independent news.
Senior Vice President News, Editor in Chief

Chip in now to fund your local journalism

A row of graphics payment types: Visa, MasterCard, Apple Pay and PayPal, and  below a lock with Secure Payment text to the right